The Florida Honeybee
A honey bee (or honeybee) is any member of the genus Apis, primarily distinguished by the production and storage of honey and the construction of perennial, colonial nests from wax.
Honey bees are the only extant members of the tribe Apini, all in the genus Apis. Currently, only seven species of honey bee are recognized, with a total of 44 subspecies, though historically, from six to eleven species have been recognized.
Honey bees represent only a small fraction of the roughly 20,000 known species of bees. Some other types of related bees produce and store honey, but only members of the genus Apis are true honey bees. The study of honey bees is known as apiology.
Honey bees appear to have their center of origin in South and Southeast Asia (including the Philippines), as all but one (i.e. Apis mellifera), of the extant species are native to that region.
Notably, living representatives of the earliest lineages to diverge (Apis florea and Apis andreniformis) have their center of origin there.
The first Apis bees appear in the fossil record at the Eocene–Oligocene boundary (23–56 mya), in European deposits. The origin of these prehistoric honey bees does not necessarily indicate Europe as the place of origin of the genus, only that the bees were present in Europe by that time. A few fossil deposits are known from South Asia, the suspected region of honey bee origin, and fewer still have been thoroughly studied.
No Apis species existed in the New World during human times before the introduction of A. mellifera by Europeans. Only one fossil species is documented from the New World, Apis nearctica, known from a single 14 million-year old specimen from Nevada.
The close relatives of modern honey bees – e.g. bumblebees and stingless bees – are also social to some degree, and social behavior seems a plesiomorphic trait that predates the origin of the genus. Among the extant members of Apis, the more basal species make single, exposed combs, while the more recently evolved species nest in cavities and have multiple combs, which has greatly facilitated their domestication.
Most species have historically been cultured or at least exploited for honey and beeswax by humans indigenous to their native ranges. Only two of these species have been truly domesticated, one (A. mellifera) at least since the time of the building of the Egyptian pyramids, and only that species has been moved extensively beyond its native range.
As in a few other types of eusocial bees, a colony generally contains one queen bee, a fertile female; seasonally up to a few thousand drone bees, or fertile males; and tens of thousands of sterile female worker bees.
Details vary among the different species of honey bees, but common features include:
Eggs are laid singly in a cell in a wax honeycomb, produced and shaped by the worker bees. Using her spermatheca, the queen actually can choose to fertilize the egg she is laying, usually depending on into which cell she is laying. Drones develop from unfertilised eggs and are haploid, while females (queens and worker bees) develop from fertilised eggs and are diploid. Larvae are initially fed with royal jelly produced by worker bees, later switching to honey and pollen. The exception is a larva fed solely on royal jelly, which will develop into a queen bee. The larva undergoes several moultings before spinning a cocoon within the cell, and pupating.
Young worker bees, sometimes called “nurse bees”, clean the hive and feed the larvae. When their royal jelly-producing glands begin to atrophy, they begin building comb cells. They progress to other within-colony tasks as they become older, such as receiving nectar and pollen from foragers, and guarding the hive. Later still, a worker takes her first orientation flights and finally leaves the hive and typically spends the remainder of her life as a forager.
Worker bees cooperate to find food and use a pattern of “dancing” (known as the bee dance or waggle dance) to communicate information regarding resources with each other; this dance varies from species to species, but all living species of Apis exhibit some form of the behavior. If the resources are very close to the hive, they may also exhibit a less specific dance commonly known as the “round dance”.
Honey bees also perform tremble dances, which recruit receiver bees to collect nectar from returning foragers.
Virgin queens go on mating flights away from their home colony to a drone congregation area, and mate with multiple drones before returning. The drones die in the act of mating. Queen honey bees do not mate with drones from their home colony.
Colonies are established not by solitary queens, as in most bees, but by groups known as “swarms”, which consist of a mated queen and a large contingent of worker bees. This group moves en masse to a nest site scouted by worker bees beforehand. Once they arrive, they immediately construct a new wax comb and begin to raise new worker brood. This type of nest founding is not seen in any other living bee genus, though several groups of vespid wasps also found new nests by swarming (sometimes including multiple queens). Also, stingless bees will start new nests with large numbers of worker bees, but the nest is constructed before a queen is escorted to the site, and this worker force is not a true “swarm”.
A caste is a different form, morphologically or reproductively, within the same sex of a species.
Honey bees have three castes, drones, workers, and queens. There are two sexes: drones are male, while workers and queens are female.
Drones
Males or drones are typically haploid, having only one set of chromosomes. They are produced by the queen if she chooses not to fertilize an egg; or by an unfertilized laying worker. Diploid drones may be produced if an egg is fertilized but is homozygous for the sex-determination allele. Drones take 24 days to develop and may be produced from summer through autumn. Drones have large eyes used to locate queens during mating flights. Drones do not have a sting.
Workers
Workers are female bees and have two sets of chromosomes. They are produced from an egg that the queen has selectively fertilized from stored sperm. Workers typically develop in 21 days. A typical colony may contain as many as 60,000 worker bees. Workers exhibit a wider range of behaviors than either queens or drones. Their duties change upon the age of the bee in the following order (beginning with cleaning out their own cell after eating through their capped brood cell): feed brood, receive nectar, clean hive, guard duty, and foraging. Some workers engage in other specialized behaviors, such as “undertaking” (removing corpses of their nestmates from inside the hive).
Workers have morphological specializations, including the corbiculum or pollen basket, abdominal glands that produce beeswax, brood-feeding glands, and barbs on the sting. Under certain conditions (for example, if the colony becomes queenless), a worker may develop ovaries.
Queens
Queen honey bees, like workers, are female. They are created at the decision of the worker bees by feeding a larva only royal jelly throughout its development, rather than switching from royal jelly to pollen once the larva grows past a certain size. Queens are produced in oversized cells and develop in only 16 days. Queens have a different morphology and behavior from worker bees. In addition to the greater size of the queen, she has a functional set of ovaries, and a spermatheca, which stores and maintains sperm after she has mated. The sting of queens is not barbed like a worker’s sting, and queens lack the glands that produce beeswax. Once mated, queens may lay up to 2,000 eggs per day. They produce a variety of pheromones that regulate behavior of workers, and helps swarms track the queen’s location during the migratory phase.
The bee featured here is only a few minutes old, having just hatched from a Palm Beach Beekeepers Association hive during their exhibit at Daggerwing Nature Center’s 2015 Earth Day Celebration.
For more information on beekeeping and honey bees, visit the Palm Beach Beekepers’ Association’s website.
For more information on other native Floridian flora and fauna, visit Daggerwing Nature Center’s website or stop by the location in person.